3D printing

Briel Computers Replica 1 Plus

Kit

I recently ordered the Briel Computers Replica I Plus, a Apple I clone. Instead of the originals big board to do a lot of NTSC generation, it uses a more modern single chip. The shipment came in a small box, and with everything I needed. The creator of the kit did a great job including everything you need, down to including an anti-static strap! The project came with some solder, but not nearly enough for everything, I think it was thicker to go with the structural points. Briel Computers sells the kit through ReActiveMicro.com. At $135 it is one of the less expensive kits I have had, but also comes with just the board. If you want a case that needs to be 3D Printed (more on that later).

ReActiveMicro points you over to the Project Wiki for more information, there is a ton there and a link to someone putting the project together. I found this easier to follow along and do than reading the instructions.

The kit was fairly easy and straight forward; I ran into a few small issues around the PS/2 port since the solder points are close together. Getting the few connector ports in can be a bit difficult with a few tiny pins and getting them in the board. As long as you have patience, then you can get through it.

I got it all together, and the board started the first try. I did have the same issue the person who made the video had; I was getting a lot of noise and characters added to the screen. I reflowed a lot of the sockets, and made sure all the socketed chips were fully seated. That cleared up the garbage at startup. The wiki also has some other notes on noise issues the board can show.

I also could not find a PS/2 keyboard in the house, and all the USB keyboards I had didn’t seem to like the USB->PS/2 Adapter. I am not very surprised by this because I didn’t have any very simple, older keyboards.

The USB port that is used for power is also a serial device for a PC/Mac. I plugged into that and got the serial driver working from SparkFun website, they produce the module. Then the output worked well, and I could enter BASIC on the board!

Case

I wanted to put the board in some sort of case, and after searching online I couldn’t find any. I thought I would throw something together quickly that I could put the board in. I took some measurements and threw together a V0 of the case. One small issue was I didn’t account for the RCA jack the video comes out of little let that sticks out. Instead of spending another 7 hours printing a new one, I used a little saw I have to cut a hole out.

Part of my thought of creating a case was to have something I could put the board in, then store it in a cabinet or shelf and not be worried that the board would get damaged. I also made a case that can go over the entire unit to protect it in storage.

Again, looking back small design things could have been changed, like flip the name of the project in the case, so looking at it in the protective cover, the text would be right right way. Getting the scaffolding out of the protective case was not the easiest of things. I designed the protective case with a rail that brings the edge of the mounting board into a locking position when you slide it in. I have to say, that was a nice aspect to the design. It took over 6 hours to print though.

MisteRdeck MIDI Control Desk

I have been enjoying 3D printing projects recently. I saw a little control board for changing audio levels, and having hotkeys while playing games. The printing took a good long while, and I had to edit some of the parts to work with the parts I found currently on Amazon. I will post the parts list below. The soldering was straight forward, and the project came with a PDF that had good instructions. This also turned into a good opportunity for me to use the new Wiring Pencil, which worked surprisingly well.

For hardware, I am using a Teensy; the Teensy can be a USB keyboard or MIDI device or joystick or serial over the USB connection. The project comes with a premade Arduino file to run it as a MIDI controller. I had not worked before with MIDI input like this, but it seemed the best path forward compared to trying to emulate a keyboard and hitting odd key combinations. Or the alternative of writing something that output serial data then finding, or writing, a daemon for my PC to listen to that device.

For software, I looked at several pieces of software to use the keys and sliders with. I looked at software like VoiceMeeter. While overall that worked, it was very inflexible, and had a giant interface for things I didn’t want to use. Then I found Midi-Mixer, a passion project by a single dev and it is EXACTLY what I needed. The sliders can control single app volume, which is easy to select. And the buttons can be programmed for anything! And easily with a GUI instead of conf files like some other open source projects.

Overall I am enjoying the finished project. It sits next to my keyboard, and allows easy changing of levels while playing games. I added little rubber feet I had laying around so the plastic housing doesn’t slide around on the desk.

To fit the sliders, I needed to modify the knobs, here is the modified versions that work with the sliders I ordered below: MisteRdeck Knob Remix by danberk – Thingiverse.

Make: Makes of MisteRdeck – Arduino-based MIDI Stream Deck by danberk – Thingiverse

Example courtesy of midi-mixer.com

Parts

PartURLPrice
Teensy v3.2Teensy USB Development Board (pjrc.com)$19.80
Gateron Yellow SwitchesGateron Yellow Linear Switches | Kinetic Labs$16.10
Slidershttps://www.amazon.com/gp/product/B079ZP3LS5/$11.99 x 2
Diodeshttps://www.amazon.com/gp/product/B06XB1R2NK/~$6
Key Capshttps://www.amazon.com/gp/product/B01M023NFK/$7.50 x 2

Mister Project Keyboard Case

Over the holidays I got parts to put together a Mister FPGA system (project home, sub-reddit). This is an open source project which allows to run classic game consoles and classic computers in hardware on the FPGA. Instead of normal emulation, where in software you pretend to be the CPU/GPU/Hardware of what the original code would run on, this projects has a Field Programable Gate Array that can change itself into being that hardware. By doing this, the system can get very very close to 100% accurate running of these old systems. Each system is created into a “core” which is applied to the FPGA to run software. The community around the Mister Project is growing, there are some projects to get systems like N64, and PSX working on this platform; but the Mister Project standardized a while ago on one FPGA, which may not be up to that task once the new cores are done because of their size and complexity.

There are many nice features that have been built out for the projects over the years. Standardizing around the DE10-Nano FPGA, there are many add-on boards you can get for it. From additional RAM, to VGA outputs. The FPGA has a ARM CPU that manages the base system, that supports Wi-Fi cards, Bluetooth, and has automatic updating features. With an IO board that most people who use the project get, you can click a button to reboot the system, or another to go back to the main menu and select the core you want to run. I have a standard IO board, USB Hub, and 256MB of RAM addon. The documentation for the open source project is actually good, with it all centering around the Github Wiki. There are automatic installers for the SD card you need to do the initial ARM side setup.

I was most interested in one of the completed cores, it is a 486DX (project home) with Sound Blaster, and everything you need to run Dos/Windows 3.1/Win 95. Having played many games as a child in that environment, having a 386SX, I was excited to give it a try.

Hardware

When I was thinking of getting the parts for the project, I looked on Thingiverse to see if anyone had put a case up; there are several. The one that caught my eye had an embedded keyboard in it (link, updated case), that one had a note on it that an update to the case was coming soon, and to hold off on printing. The estimate for printing the case was around 24 hours, and I didn’t want to do it twice, so I waited. I reached out to the creator who worked away over the holiday season to get the update out. Myself and another were chatting with him in the comments about printing it, and the creator graciously put up the design, before all the instructions were done so the two of us could start printing.

USB Board, with input against the case

This is the largest thing I have printed on the printer, with my print bed holding up to 220mm, and the case coming in at ~210mm. It printed great. I used PETG instead of PLA plastic to have added resistance to heat. After that, it was screwing parts together, and making a tiny circuit board to support the normal buttons on the top of the case. I ran into a small problem with the updated USB board I have, its input was blocked by the side of the case. The creator had a different revision of the USB board, and thus hadn’t tested with my version. I ordered some cables online and ended up checking the pinouts and making my own header to USB cable, after that it was smooth sailing.

I ordered a collection of M3 screws, to have different sizes. That is the size the case was built around. I also had some screws that do not have heads on them, I was able to use these internal screws to hold some of the boards in. I will put a full list of the parts I ordered below, including the headers for the Mister IO board, which took a bit of research to find.

The USB board, and the Mister FPGA itself need 5V power, the USB board came with a Y cable to breakout a single power brick into the 2 boards, but it was not designed for them to be this far apart. Usually the USB board stacks directly under the FPGA, with this case they sit several inches apart. I ended up getting a 1ft extension cable to be able to make up the difference. While that worked I then got a 2.1×5.5mm barrel connector and socket to put on the back of the case, now it has a nice flush place on the back of the case to plugin the power for the USB board. I am using a SD card right now for all my storage. The 128gb it gives me is fine to get started. I have seen people with setups that have a SATA SSD in the case with a USB adapter. This case supports in in the spot under the FPGA. If you load the system up with a ton of classic games and systems, that may be needed.

Setup and Software

Setup I used the Mister “Mr Fusion” Windows installer. Popped in a 128gb micro SD card, and a few minutes later it was ready to go. It takes about 10 minutes the first time it is setup and has internet access to download all the “updates” which is every core registered with the project. The Wi-Fi and Bluetooth dongles were automatically detected, I just had to enter Wi-Fi credentials.

I think the case came out nicely, and have been having fun installing things on it and playing with it. While the 2GB virtual hard drive I gave Windows 95 is on a SD card and gives decent read/write speeds there, the FGPA 486 at 90mhz still struggles a bit with Windows 95. People are working on getting the perf better. Improvements like recently added L2 caching can help. With the click of a button I can swap it over to Windows 3.1 on a different virtual drive and load up my DOS collection. One of the benefits of the Mister project as mentioned is the ARM management layer, I can add files to a ISO, then SCP it to the system. You can also use any size SD card for all your images, and when you want a new virtual hard drive, its a few clicks away. Then mounting those images is straight forward. Windows 3.1 and 95 are supposed to be able to open a null modem connection to the host and transfer files/browse the internet that way, I have yet to get this working.

After all the posts I have done on here recently I couldn’t just play around with the 486. I also got the Mac Plus side of the house running. You can run with 512kb, 1mb, or 4mb of RAM. It has a 20MB HDD, and 2 floppy drives. There is also a Turbo mode, which we obviously need because turbo! And because classic Macs can be slow…

All together it is a fun project I continue to play with. I like being able to play with classic systems like a Commodore 64 without it using up space in my small apartment. The ease of loading software also makes for a very enjoyable experience. If anyone has experience with this, or has questions feel free to comment below!

Parts List

I tend to get packs of things when working on a project like this. I can use them later and it gives be options with several sizes. I did not include the Mister Board and IO board since there are many sellers of those standard parts, I did include the USB and Bluetooth because they have been proven to work.

Wireless 802.11AC USBhttps://www.amazon.com/gp/product/B01MY7PL10/
Bluetooth Adapterhttps://www.amazon.com/gp/product/B07J5WFPXX/
Keyboardhttps://www.amazon.com/gp/product/B06XGHP35N/
LEDs for breakouthttps://www.amazon.com/gp/product/B07G49PJLG/
Buttons for breakout boardhttps://www.amazon.com/gp/product/B071KX71SV/
Board for breakouthttps://www.amazon.com/gp/product/B078W1F3PC/
USB 3.0 extensionhttps://www.amazon.com/gp/product/B087BK3WRB/
USB 3.0 90 degree connectorhttps://www.amazon.com/gp/product/B0793NQRYZ/
Ethernet 90 degree connectorhttps://www.amazon.com/gp/product/B01MSIE5HO/
USB Board Cable Headerhttps://www.amazon.com/gp/product/B01DP13EDA/
USB Cable header to micro usbhttps://www.amazon.com/gp/product/B07WLM7Q6Z/
1×5 pin IO board cablehttps://www.amazon.com/gp/product/B072VM9HVC/
1×7 pin IO board cablehttps://www.amazon.com/gp/product/B01IZDBXF4/
Power port and cableshttps://www.amazon.com/gp/product/B01NBOP46E/
Power Extension Cablehttps://www.amazon.com/gp/product/B01M6C24XG/
Internal Screwshttps://www.amazon.com/gp/product/B07QFVRS77/

ESXi Migration & Lenovo ThinkCentre M710s

I have started a transition from Hyper-V and Storage Spaces Direct to VMWare vSphere and vSAN. I apologize that these blog posts order is all over the place. Part of the transition is upgrading the hardware on some of the hosts I have, including getting 250GB NVME drives for vSAN cache. I started the migration with one of the desktops that run in the cluster, a Lenovo ThinkCentre M710s. After finding the small slot the NVME drive goes in, I realized there is a manufacture piece of plastic you are supposed to get to install a NVME drive. Since I do not have that, and do not want to pay for it, I spent a good bit more than a hour the first day of the migration creating this bracket and 3D printing it. Then while that was printing, I realized one of the feet on the system had gone missing, so I made a small one of those.

This post is just a quick update and a preview of more to come.

NVME Drive Holder: Lenovo ThinkCentre M710s NVME Bracket by danberk – Thingiverse

Foot: Lenovo ThinkCentre M710s Foot by danberk – Thingiverse

3D Printing and Thingiverse Login Fix

I recently got a new 3D printer (Ender 3 Pro), and thought I would put up some of the small things I have recently printed. In trying to print things from Thingiverse, I couldn’t login even after making an account. I would get a spinning “Logging in” and it would never end. After looking at the network log, I saw it trying to reach out to https://accounts.thingiverse.com/unverified?username=danberk If you run into this issue, go to that URL with your username and it will send you an email to verify your account. Then the site will allow you to login.

Ruckus ICX 7150 sideways shelf mount

I have been using Ruckus ICX 7150-12P switches at home recently, I wanted to have it more out of the way; so I designed and printed a mount that would mount the switch to the side. It came out well and looks good! I also printed a network cable comb to hold all the cables nicely together.

SD card and USB holder!

This is a nice little SD card, micro SD, and USB holder. I 3M stuck it to the shelf I have, next to the printer.

Mac SE with battery mount

I have already posted about the Mac SE Battery mount I made. I put the design up if anyone is interested.